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power has trivial domain. Similar result for composition operators in L2-spaces is 
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1. Introduction

In 1940 Naimark gave a remarkable example of a closed symmetric operator whose square has trivial 
domain (see [19]). In 1983 Chernoff published a short example of a semibounded closed symmetric operator 
whose square has trivial domain (see [11]). In the same year Schmüdgen found out another pathological 
behaviour of domains of powers of closed symmetric operators related to density with respect to graph 
norms (see [21]). It turns out that Naimark’s phenomenon can never happen in some concrete classes of 
operators. Among them are the class CO of composition operators in L2-spaces and the class WS of weighted 
shifts on directed trees. The reason for this is that symmetric operators in these classes are automatically 
bounded (see [17,8]).
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The class CO has been attracting attention of a considerable number of researchers since at least late 
1950’s. We refer the reader to [23] and [7] for more information on bounded and unbounded operators in 
the class CO, respectively. The class WS was introduced in [15] and has been intensively studied since then 
(see e.g., [5,16,6,17]). It substantially generalizes the class of (unilateral and bilateral) weighted shifts in 
�2-spaces. It is also related to the class of operators investigated by Carlson in [9,10]. Unbounded weighted 
shifts on directed trees proved to have very interesting features which make them desirable candidates for 
testing hypotheses and constructing examples (see e.g., [15,16,18,4,30]). This is due to the fact that the 
interplay between graph theory and operator theory makes the class WS more flexible.

The above raises the question of whether the square, or a higher power, of an operator in the class 
WS or CO has trivial domain. Clearly, such an operator must be nonsymmetric. The question becomes 
interesting and highly nontrivial when the operator under consideration is assumed to be subnormal (recall 
that symmetric operators are subnormal; see [1, Theorem 1 in Appendix I.2]). One of the reasons for this is 
that quasinormal operators which are particular instances of subnormal operators have all powers densely 
defined (see [26, Proposition 5]). On the other hand, formally normal operators1 belonging to the class WS

or CO are automatically normal (see [17, Proposition 3.1] and [7, Theorem 9.4]), and as such have all powers 
densely defined. Some attempts to tackle our question have been undertaken in [18,3] where the case of 
hyponormal operators in both classes WS and CO was solved. Recently, it has been shown that for every 
positive integer n there exists an injective subnormal operator in the class WS whose nth power is densely 
defined while its (n + 1)th power is not; the same is true for CO (see [4]). These examples are built over the 
simplest possible directed trees which admit such operators.

In view of the above discussion, the following problem arises (the case of n = 1 appeared already in [18]):

Problem 1.1. Is it true that for every integer n � 1, there exists a subnormal weighted shift on a directed 
tree whose nth power is densely defined and the domain of its (n + 1)th power is trivial?

In the present paper we solve Problem 1.1 affirmatively (cf. Theorem 3.1). A similar problem can be 
stated for composition operators in L2-spaces. We solve it affirmatively as well (cf. Corollary 3.4).

2. Preliminaries

First, we introduce some notation and terminology. In what follows Z+, N, R+ and C stand for the sets 
of nonnegative integers, positive integers, nonnegative real numbers and complex numbers, respectively. For 
n ∈ N, we denote by Nn the n-fold Cartesian product of N with itself. We set Jn = {k ∈ N : k � n} for 
n ∈ N. We write B(R+) for the σ-algebra of all Borel subsets of R+. Given ϑ ∈ R+, we denote by Pϑ(R+)
the set of all Borel probability measures on R+ whose closed supports2 are contained in [ϑ, ∞), and by δϑ
the measure in Pϑ(R+) concentrated on the one-point set {ϑ} (all measures considered in this paper are 
positive). The notation � is reserved to denote pairwise disjoint union of sets.

For the reader’s convenience, we recall the following standard result of measure theory which will be used 
in this paper (see e.g., [20, Theorem 1.29]).

If (X,A , μ) is a measure space, f : X → [0,∞] is an A -measurable function and ν

is the measure on A given by ν(Δ) =
∫
Δ
fdμ for Δ ∈ A , then

∫
X
gdν =

∫
X
gfdμ

for every A -measurable function g : X → [0,∞].
(2.1)

The following auxiliary lemma concerning moments is stated without proof. Here and later, 
∫∞
a

means 
integration over the closed interval [a, ∞) on the real line.

1 Formally normal operators are natural generalizations of symmetric operators. In general, they are not subnormal (see [12]).
2 Recall that a finite Borel measure on R+ is regular and as such has a closed support.
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Lemma 2.1. Suppose μ is a finite Borel measure on R+ such that 
∫∞
0 sndμ(s) < ∞ for some n ∈ N. Then ∫∞

0 skdμ(s) < ∞ for every k ∈ N such that k � n.

The domain of an operator A in a complex Hilbert space H is denoted by D(A) (all operators considered 
in this paper are linear). Recall that a closed densely defined operator A in H is said to be normal if 
AA∗ = A∗A, where A∗ stands for the adjoint of A (see [2,22,31] for more on this class of operators). We say 
that a densely defined operator A in H is subnormal if there exists a complex Hilbert space K and a normal 
operator N in K such that H ⊆ K (isometric embedding), D(A) ⊆ D(N) and Ah = Nh for all h ∈ D(A).
We refer the reader to [13] and [25–27,29] for the foundations of the theory of bounded and unbounded 
subnormal operators, respectively.

Let T = (V, E) be a directed tree, where V and E stand for the sets of vertices and edges of T , 
respectively (V is assumed always to be nonempty). Set

Chi(u) = {v ∈ V : (u, v) ∈ E}, u ∈ V.

Denote by par the partial function from V to V which assigns to a vertex u ∈ V its parent par(u) (i.e., a 
unique v ∈ V such that (v, u) ∈ E). A vertex u ∈ V which has no parent is called a root of T ; if it exists, it 
is unique and denoted by root. Set V ◦ = V \ {root} if T has a root; otherwise, we put V ◦ = V . If W ⊆ V , 
we set Chi(W ) =

⋃
v∈W Chi(v), Chi〈0〉(W ) = W and Chi〈n+1〉(W ) = Chi(Chi〈n〉(W )) for every n ∈ Z+. Given 

u ∈ V , we put Chi〈n〉(u) = Chi〈n〉({u}) and Des(u) =
⋃∞

n=0 Chi〈n〉(u). Since (Des(u), E ∩ (Des(u)×Des(u)))
is a subtree of T , we see that Des(u)◦ = Des(u)\{u} for all u ∈ V . If T ′ = (V ′, E′) is another directed tree, 
then we say that a mapping Ψ : V → V ′ is a graph isomorphism if it is a bijection such that (Ψ(u), Ψ(v)) ∈ E′

if and only if (u, v) ∈ E for all u, v ∈ V . If this is the case, then the directed trees T and T ′ are called 
graph isomorphic. We say that T is extremal if Chi(u) is countably infinite for every u ∈ V . It is easily 
seen that up to graph isomorphism, there are exactly two extremal directed trees, one with root, the other 
without.

Denote by �2(V ) the Hilbert space of square summable complex functions on V with standard inner 
product. Given u ∈ V , we write eu for the characteristic function of the one-point set {u}. Clearly, the 
system {eu}u∈V is an orthonormal basis of �2(V ). For λ = {λv}v∈V ◦ ⊆ C, the operator Sλ in �2(V ) defined 
by

D(Sλ) = {f ∈ �2(V ) : ΛT f ∈ �2(V )},

Sλf = ΛT f, f ∈ D(Sλ),

where ΛT is the mapping defined on functions f : V → C via

(ΛT f)(v) =
{
λv · f

(
par(v)

)
if v ∈ V ◦,

0 if v = root,

is called a weighted shift on T with weights λ. If V ◦ = ∅, then Sλ is the zero operator on a one-dimensional 
Hilbert space. Recall that unilateral or bilateral weighted shifts are instances of weighted shifts on directed 
trees. We refer the reader to [15] for basic facts about directed trees and weighted shifts on directed trees 
needed in this paper.

Below we state a criterion for subnormality of weighted shifts on countably infinite directed trees. It is 
an extension, in a sense, of [5, Theorem 5.1.1] to the case of weighted shifts on directed trees whose C∞

vectors are not necessarily dense in the underlying space. This criterion helps us to solve Problem 1.1.
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Theorem 2.2. (See [4, Theorem 3].) Let Sλ be a weighted shift on a countably infinite directed tree T = (V, E)
with weights λ = {λv}v∈V ◦ . Suppose there exist a family {μv}v∈V of Borel probability measures on R+ and 
a family {εv}v∈V of nonnegative real numbers such that3

μu(Δ) =
∑

v∈Chi(u)

|λv|2
∫
Δ

1
s
dμv(s) + εuδ0(Δ), Δ ∈ B(R+), u ∈ V. (2.2)

Then the following two assertions hold:

(i) if Sλ is densely defined, then Sλ is subnormal,
(ii) if n ∈ N, then Sn

λ is densely defined if and only if 
∫∞
0 sn dμu(s) < ∞ for every u ∈ V such that Chi(u)

has at least two vertices.

Remark 2.3. Note that if w ∈ V ◦, λw �= 0 and the equality in (2.2) holds for u ∈ {w, par(w)}, then εw = 0. 
Indeed, substituting Δ = {0} into (2.2) with u = par(w), we deduce that μw({0}) = 0. As a consequence, 
we see that (2.2) yields μv({0}) = 0 for every v ∈ V ◦ such that λv �= 0. Hence, applying the same procedure 
to u = w gives εw = 0. This implies that if all the weights {λv : v ∈ V ◦} are nonzero, then condition (2.2)
takes the following simplified form

μu(Δ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
v∈Chi(u)

|λv|2
∫
Δ

1
s
dμv(s) if u ∈ V ◦,

∑
v∈Chi(root)

|λv|2
∫
Δ

1
s
dμv(s) + εrootδ0(Δ) if u = root,

Δ ∈ B(R+).

The following lemma will be used in the proof of the main theorem.

Lemma 2.4. Let Sλ be a weighted shift on a directed tree T = (V, E) with weights λ = {λv}v∈V ◦ and let 
n ∈ N. Then the following two conditions are equivalent:

(i) D(Sn
λ) = {0},

(ii) eu /∈ D(Sn
λ) for every u ∈ V .

Moreover, if there exist a family {μv}v∈V of Borel probability measures on R+ and a family {εv}v∈V ⊆ R+
which satisfy (2.2), then (i) is equivalent to

(iii)
∫∞
0 sndμu(s) = ∞ for every u ∈ V .

Proof. (i)⇒(ii) Evident.
(ii)⇒(i) Suppose that, contrary to our claim, there exists f ∈ D(Sn

λ) such that f �= 0. Then f(u) �= 0 for 
some u ∈ V . In view of [16, Theorem 3.2.2(ii)], this implies that eu ∈ D(Sn

λ), a contradiction.
(ii)⇔(iii) Apply Lemma 2.1 and [5, Lemmata 2.3.1(i) and 4.2.2(i)]. �

3. The main theorem

We begin by recalling that if there exists a weighted shift Sλ on a directed tree T with nonzero weights 
such that

3 We adopt the conventions that 0 · ∞ = ∞ · 0 = 0, 1
0 = ∞ and ∑v∈∅

ξv = 0.
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Sλ is densely defined and D(S2
λ) = {0}, (3.1)

then the directed tree T is extremal (see [18, Theorem 3.1]). As shown in [18, Theorem 3.1], each extremal 
directed tree admits a hyponormal weighted shift Sλ with nonzero weights that satisfies (3.1). Hence, to 
solve Problem 1.1 affirmatively we may assume that the directed tree in question is extremal.

The following theorem is the main result of the present paper. It solves Problem 1.1 affirmatively. The 
proof of Theorem 3.1 is given in Section 4.

Theorem 3.1. Suppose T = (V, E) is an extremal directed tree and n ∈ N. Then there exists a subnormal 
weighted shift Sλ on T with nonzero weights such that Sn

λ is densely defined and D(Sn+1
λ ) = {0}.

The following simple observation which is related to Problem 1.1 is stated without proof.

Lemma 3.2. If A is an operator such that D(An) = {0} for some positive integer n, then A is injective.

By Lemma 3.2, the operator Sλ in Theorem 3.1 is automatically injective.

Remark 3.3. It is worth mentioning that every weighted shift on a directed tree is closed (see [15, Propo-
sition 3.1.2]). However, it is not true that powers of weighted shifts on directed trees are closed. In fact, it 
may happen that the square of an unbounded injective unilateral shift S in �2 is bounded (as an operator on 
D(S2)) and consequently S2 is not closed (see e.g., [24, p. 198]). Indeed, otherwise S2, being bounded and 
densely defined, has domain equal to �2 and thus the domain of S is equal to �2 as well. Since S is closed, 
the closed graph theorem implies that S is bounded, a contradiction. On the other hand, if a subnormal 
operator is closed, then all its powers are closed (see [28, Proposition 6]; see also [24, Proposition 5.3]). In 
particular, all powers of the operator Sλ in Theorem 3.1 are closed.

Theorem 3.1 has a counterpart for composition operators in L2-spaces. Recall that if (X, A , μ) is a 
σ-finite measure space and φ : X → X is a transformation such that φ−1(Δ) ∈ A for every Δ ∈ A , and 
μ(φ−1(Δ)) = 0 for every Δ ∈ A such that μ(Δ) = 0, then the operator C : L2(μ) ⊇ D(C) → L2(μ) given 
by

D(C) = {g ∈ L2(μ) : g ◦ φ ∈ L2(μ)} and Cf = f ◦ φ for f ∈ D(C)

is well-defined; we call it a composition operator. Composition operators are always closed (see e.g., [7, 
Proposition 3.2]), but in general their powers are not (see [7, Example 5.4]). However, if the composition 
operator is subnormal, then all its powers are closed.

Corollary 3.4. For every n ∈ N, there exists an unbounded subnormal composition operator C in an L2-space 
over a σ-finite measure space such that Cn is densely defined and D(Cn+1) = {0}.

Proof. Apply Theorem 3.1, [15, Theorem 3.2.1] and [16, Lemma 4.3.1]. �
It is worth mentioning that in view of Lemma 3.2, the operator C in Corollary 3.4 is automatically 

injective. A close inspection of the proofs of Theorem 3.1 and [16, Lemma 4.3.1] reveals that the operator 
C in Corollary 3.4 can be built on a discrete measure space. The continuous case can be easily derived from 
the discrete one by applying [14, Theorem 2.7].
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4. The proof of the main theorem

Since the proof of the main theorem is quite long, we divide it into several lemmas. To begin with, we 
recall the following definition: a Borel measure μ on R+ is said to be discrete if there exist a countable 
subset Δ of R+ and a family {αt}t∈Δ of positive real numbers such that μ =

∑
t∈Δ αtδt. The set Δ, which 

is uniquely determined by μ, is denoted by At(μ) (if Δ = ∅, then μ = 0).
For the reader’s convenience, we include the proof of the following result which seems to be folklore (the 

idea of the proof comes from [4, Example 1]).

Lemma 4.1. If m ∈ N and Δ is a countable subset of R+ such that supΔ = ∞, then there exists a finite 
discrete Borel measure μ on R+ such that At(μ) = Δ, 

∫∞
0 smdμ(s) < ∞ and 

∫∞
0 sm+1dμ(s) = ∞.

Proof. By our assumptions Δ is countably infinite. Hence there exists a sequence {tj}∞j=1 of distinct real 
numbers such that Δ = {tj : j ∈ N}. Since supj∈N tj = ∞, there exists a subsequence {tjk}∞k=1 of the 
sequence {tj}∞j=1 such that tjk � k for every k ∈ N. Set Ω = {jk : k ∈ N}. Clearly, there exists a family 
{βj}j∈N\Ω of positive real numbers such that

∑
j∈N\Ω

βjt
m
j < ∞. (4.1)

Define the family {βj}j∈Ω of positive real numbers by

βjk = 1
k2tmjk

, k ∈ N.

Since tjk � k for every k ∈ N, we have

∑
j∈Ω

βjt
m
j =

∞∑
k=1

βjk t
m
jk

=
∞∑
k=1

1
k2 < ∞ (4.2)

and

∑
j∈Ω

βjt
m+1
j =

∞∑
k=1

βjk t
m+1
jk

=
∞∑
k=1

tjk
k2 �

∞∑
k=1

1
k

= ∞. (4.3)

Combining (4.1), (4.2) and (4.3), we deduce that the measure μ :=
∑

t∈Δ αtδt with αtj = βj for j ∈ N

meets our requirements. This completes the proof. �
Corollary 4.2. If m ∈ N, ϑ ∈ R+ and E is a countably infinite subset of R+, then there exists a finite 
discrete Borel measure μ on R+ such that At(μ) is a countably infinite subset of [ϑ, ∞), E ∩ At(μ) = ∅, ∫∞
0 smdμ(s) < ∞ and 

∫∞
0 sm+1dμ(s) = ∞.

Set X =
⋃∞

k=0 Xk, where Xk = �k
j=0 N

j with N0 = {0}.

Lemma 4.3. If n ∈ N and ϑ ∈ R+, then there exists a family {νx}x∈X of finite discrete Borel measures on 
R+ such that

(i) {At(νx)}x∈X are pairwise disjoint countably infinite subsets of [ϑ, ∞),
(ii)

∑
x∈Nk

∫∞
0 sk+ndνx(s) � 2−k for all k ∈ Z+,

(iii)
∫∞
0 sk+n+1dνx(s) = ∞ for all x ∈ Nk and all k ∈ Z+.
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Proof. We use an induction argument. First, by Corollary 4.2, there exists a finite discrete Borel measure ν0
on R+ such that At(ν0) is a countably infinite subset of [ϑ, ∞), 

∫∞
0 sndν0(s) < ∞ and 

∫∞
0 sn+1dν0(s) = ∞. 

The induction step is as follows. Fix k ∈ Z+, and suppose we have constructed a family {νx}x∈Xk
of finite 

discrete Borel measures on R+ such that {At(νx)}x∈Xk
are pairwise disjoint countably infinite subsets of 

[ϑ, ∞),
∞∫
0

sj+ndνx(s) < ∞ and
∞∫
0

sj+n+1dνx(s) = ∞ (4.4)

for all x ∈ Nj and all j ∈ {0, . . . , k}. Let ιk : N → Nk+1 be any bijection. Applying Corollary 4.2 to 
E = �x∈Xk

At(νx), we find a finite discrete Borel measure νιk(1) on R+ such that At(νιk(1)) is a countably 
infinite subset of [ϑ, ∞), At(νιk(1)) ∩ E = ∅, 

∫∞
0 sn+k+1dνιk(1)(s) < ∞ and 

∫∞
0 sn+k+2dνιk(1)(s) = ∞. 

Using induction on i, we obtain a sequence {νιk(i)}∞i=1 of finite discrete Borel measures on R+ such that 
{At(νx)}x∈Xk+1 are pairwise disjoint countably infinite subsets of [ϑ, ∞) and (4.4) holds for all x ∈ Nj and 
all j ∈ {0, . . . , k+1}. By induction on k, we then obtain a family {νx}x∈X of finite discrete Borel measures 
on R+ such that {At(νx)}x∈X are pairwise disjoint countably infinite subsets of [ϑ, ∞) and (4.4) holds for 
all x ∈ Nj and all j ∈ Z+. Multiplying the measures νx, x ∈ X , by appropriate positive factors if necessary, 
we complete the proof. �

From now on, we write ζj1,...,jk instead of the formal expression ζ(j1,...,jk) whenever (j1, . . . , jk) ∈ Nk and 
k � 2.

Lemma 4.4. If n ∈ N and ϑ ∈ [1, ∞), then there exist a family {Ωx}x∈X of countably infinite subsets of 
[ϑ, ∞) and a discrete measure ν ∈ Pϑ(R+) such that

(i) At(ν) = Ω0,
(ii) Ω0 = �∞

j1=1 Ωj1 and Ωj1,...,jk = �∞
jk+1=1 Ωj1,...,jk,jk+1 for all (j1, . . . , jk) ∈ Nk and k ∈ N,

(iii)
∫
Ωx

sk+ndν(s) < ∞ and 
∫
Ωx

sk+n+1dν(s) = ∞ for all x ∈ Nk and k ∈ Z+.

Proof. Applying Lemma 4.3, we get a family {νx}x∈X of finite discrete Borel measures on R+ satisfying 
the conditions (i)–(iii) of this lemma. Define the set Ω0 by

Ω0 = �
x∈X

Δx =
∞�
k=0
�
x∈Nk

Δx with Δx = At(νx) for every x ∈ X . (4.5)

It is plain that Ω0 is a countably infinite subset of [ϑ, ∞). Set

ν =
∞∑
k=0

∑
x∈Nk

νx. (4.6)

Clearly, ν is a discrete Borel measure on R+ satisfying (i). Since Ω0 ⊆ [ϑ, ∞) ⊆ [1, ∞), the sequences 
{
∫∞
0 sndν(s)}∞n=0 and {

∫
Δx

sndνx(s)}∞n=0, x ∈ X , are non-decreasing. As a consequence of this property 
and Lemma 4.3(ii), we have

ν(R+)
(i)
�

∞∫
0

sndν(s) (4.6)=
∞∑
k=0

∑
x∈Nk

∫
Δx

sndνx(s)

�
∞∑
k=0

∑
x∈Nk

∫
Δx

sk+ndνx(s) � 2. (4.7)
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This means that the measure ν is finite and consequently, by (i), the closed support of ν is contained in 
[ϑ, ∞). It follows from Lemma 4.3(iii) that

∫
Ω0

sn+1dν(s)
(4.6)
�

∫
Δ0

sn+1dν0(s) = ∞.

This and (4.7) show that the inequality and the equality in (iii) hold for x ∈ N0 and k = 0.
Now we will construct a family {Ωx}x∈X \N0 of countably infinite subsets of [ϑ, ∞) and a family 

{tx}x∈X \N0 ⊆ [ϑ, ∞) which satisfy the following conditions for all l ∈ N and (j1, . . . , jl) ∈ Nl,

Ω0 =
∞�

j′1=1
Ωj′1 , (4.8)

if l � 2, then Ωj1,...,jl−1 =
∞�

j′l=1
Ωj1,...,jl−1,j′l

, (4.9)

{tj′1}
∞
j′1=1 is an injective sequence in Δ0 such that Δ0 = {tj′1 : j′1 ∈ N}, (4.10)

if l � 2, then {tj1,...,jl−1,j′l
}∞j′l=1 is an injective sequence in �

x∈Xl−1

Δx

such that {tj1,...,jl−1} �Δj1,...,jl−1 = {tj1,...,jl−1,j′l
: j′l ∈ N},

⎫⎬
⎭ (4.11)

Ωj1,...,jl = {tj1,...,jl} �Δj1,...,jl �
∞�
p=1

∞�
(j′l+1,...,j

′
l+p)∈Np

Δj1,...,jl,j′l+1,...,j
′
l+p

. (4.12)

Since Xk � Xk+1 for every k ∈ N and X =
⋃∞

k=1 Xk, we can obtain the required families inductively 
by constructing ascending sequences of families {Ωx}x∈Xk\N0 and {tx}x∈Xk\N0 satisfying the conditions 
(4.8)–(4.12) for all l ∈ Jk and (j1, . . . , jl) ∈ Nl (clearly, the conditions (4.9) and (4.11) are void for l = 1).

For the base step (k = 1), note that since Δ0 is a countably infinite subset of [ϑ, ∞), there exists a 
sequence {tj′1}∞j′1=1 ⊆ [ϑ, ∞) which satisfies (4.10). For j1 ∈ N, we define the set Ωj1 by (4.12) with l = 1. 
It follows from (4.5) and (4.10) that Ωj1 , j1 ∈ N, are well-defined countably infinite subsets of [ϑ, ∞) that 
satisfy (4.8).

For the induction step, let k be some unspecified positive integer. Suppose we have constructed a fam-
ily {Ωx}x∈Xk\N0 of countably infinite subsets of [ϑ, ∞) and a family {tx}x∈Xk\N0 ⊆ [ϑ, ∞) such that 
(4.8)–(4.12) hold for all l ∈ Jk and (j1, . . . , jl) ∈ Nl. Let (j1, . . . , jk) ∈ Nk. Since Δj1,...,jk is a countably 
infinite subset of [ϑ, ∞), we infer from (4.10) if k = 1, or (4.11) with l = k if k � 2, that there exists a 
sequence {tj1,...,jk,j′k+1

}∞j′k+1=1 ⊆ [ϑ, ∞) which satisfies (4.11) with l = k + 1. For jk+1 ∈ N, we define the 

set Ωj1,...,jk+1 by (4.12) with l = k + 1. It follows from (4.11) with l = k + 1 that Ωj1,...,jk+1 , jk+1 ∈ N, 
are well-defined countably infinite subsets of [ϑ, ∞) which satisfy (4.9) for l = k + 1. This completes the 
induction step. Using induction, we obtain the required systems {tx}x∈X \N0 and {Ωx}x∈X \N0 satisfying 
(4.8)–(4.12) for all l ∈ N and (j1, . . . , jl) ∈ Nl.

Clearly, the so constructed family {Ωx}x∈X satisfies (i) and (ii). It remains to show that the inequality 
and the equality in (iii) hold for all x ∈ Nk and k ∈ N. Using (4.12) with l = k, the conditions (4.5)
and (4.6), the fact that Δx ⊆ [1, ∞) for every x ∈ X and Lemma 4.3(ii), we see that for all k ∈ N and 
(j1, . . . , jk) ∈ Nk,

∫
Ω

sk+ndν(s) (4.12)= δ +
∞∑
p=1

∑
(jk+1,...,jk+p)∈Np

∫
Δ

sk+ndνj1,...,jk+p
(s)
j1,...,jk j1,...,jk+p
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� δ +
∞∑
p=1

∑
(jk+1,...,jk+p)∈Np

∫
Δj1,...,jk+p

sk+p+ndνj1,...,jk+p
(s)

� δ + 1
2 < ∞,

where

δ = tk+n
j1,...,jk

ν({tj1,...,jk}) +
∫

Δj1,...,jk

sk+ndνj1,...,jk(s).

Arguing as above and using Lemma 4.3(iii), we deduce that for all k ∈ N and (j1, . . . , jk) ∈ Nk,∫
Ωj1,...,jk

sk+n+1dν(s) �
∫

Δj1,...,jk

sk+n+1dνj1,...,jk(s) = ∞,

which yields (iii). Hence ν is a finite nonzero discrete Borel measure on R+ satisfying (i) and (iii). Replacing 
ν by ν(R+)−1ν if necessary, we complete the proof. �
Lemma 4.5. Let T = (V, E) be an extremal directed tree. Suppose n ∈ N, ϑ ∈ [1, ∞) and w ∈ V . Then there 
exist systems {λv}v∈Des(w)◦ ⊆ (0, ∞) and {μv}v∈Des(w) ⊆ Pϑ(R+) such that for every u ∈ Des(w),

μu(Δ) =
∑

v∈Chi(u)

λ2
v

∫
Δ

1
s
dμv(s) for every Δ ∈ B(R+), (4.13)

∞∫
0

sndμu(s) < ∞ and
∞∫
0

sn+1dμu(s) = ∞. (4.14)

Proof. Set

EX =
{
(0, j1) : j1 ∈ N

}
�

∞�
k=1

{(
(j1, . . . , jk), (j1, . . . , jk, jk+1)

)
: j1, . . . , jk, jk+1 ∈ N

}
.

Note that (X , EX ) is a directed tree with root 0 (see Fig. 1).
Using induction and the fact that (Des(w), E ∩ (Des(w)×Des(w))) is an extremal directed tree (because 

so is T ), we deduce that there exists a family of distinct vertices {ξx}x∈X such that Des(w) = {ξx : x ∈ X }
and

ξ0 = w, Chi(ξ0) =
{
ξj1 : j1 ∈ N

}
,

Chi(ξj1,...,jk) =
{
ξj1,...,jk,jk+1 : jk+1 ∈ N

}
, k ∈ N, (j1, . . . , jk) ∈ Nk.

Then the mapping Φ : Des(w) → X defined by

Φ(ξx) = x, x ∈ X ,

is a graph isomorphism. In the rest of the proof we will use this identification.
Let ν and {Ωx}x∈X be as in Lemma 4.4 (with the same n and ϑ). In view of Lemmata 2.1 and 4.4(iii), 

we have

0 <

∫
Ωx

skdν(s) < ∞, x ∈ Nk, k ∈ N. (4.15)
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Fig. 1. An illustration of the directed tree (X , EX ).

Set μ0 = ν. Then μ0 ∈ Pϑ(R+). For a given k ∈ N and (j1, . . . , jk) ∈ Nk, we define the Borel measure 
μj1,...,jk on R+ and λj1,...,jk ∈ (0, ∞) by

μj1,...,jk(Δ) =

∫
Δ∩Ωj1,...,jk

skdν(s)∫
Ωj1,...,jk

skdν(s)
, Δ ∈ B(R+),

λj1,...,jk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√∫
Ωj1,...,jk

skdν(s) if k = 1,
√ ∫

Ωj1,...,jk
skdν(s)∫

Ωj1,...,jk−1
sk−1dν(s) if k � 2.

According to (4.15), μj1,...,jk and λj1,...,jk are well-defined. Since Ωj1,...,jk ⊆ [ϑ, ∞), we see that μj1,...,jk ∈
Pϑ(R+).

Now, we verify that the conditions (4.13) and (4.14) hold. Fix k ∈ N and u = (j1, . . . , jk) ∈ Nk. Using 
(2.1), we infer from Lemma 4.4(ii) that

∞∑
jk+1=1

λ2
j1,...,jk,jk+1

∫
Δ

1
s
dμj1,...,jk,jk+1(s) =

∞∑
jk+1=1

∫
Δ∩Ωj1,...,jk,jk+1

skdν(s)∫
Ωj1,...,jk

skdν(s)

=

∫
Δ∩Ωj1,...,jk

skdν(s)∫
Ωj1,...,jk

skdν(s)
= μj1,...,jk(Δ), Δ ∈ B(R+),

which gives (4.13). By (2.1) again and Lemma 4.4(iii), we have

∞∫
0

sndμj1,...,jk(s) =

∫
Ωj1,...,jk

sk+ndν(s)∫
Ωj1,...,jk

skdν(s)
< ∞,

∞∫
0

sn+1dμj1,...,jk(s) =

∫
Ωj1,...,jk

sk+n+1dν(s)∫
Ωj1,...,jk

skdν(s)
= ∞,
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which means that (4.14) holds. Finally, arguing as above and using Lemma 4.4(i), we can verify that if 
u = 0, then (4.13) and (4.14) hold as well. This completes the proof. �
Lemma 4.6. Let T = (V, E) be an extremal directed tree, w ∈ V ◦, x = par(w) and n ∈ N. Suppose that 
{λv}v∈Des(w)◦ ⊆ (0, ∞) and {μv}v∈Des(w) ⊆ P1(R+) satisfy (4.13) and (4.14) for every u ∈ Des(w). Then 
there exist {λv}v∈Des(x)◦\Des(w)◦ ⊆ (0, ∞) and {μv}v∈Des(x)\Des(w) ⊆ P1(R+) such that {λv}v∈Des(x)◦ and 
{μv}v∈Des(x) satisfy (4.13) and (4.14) for all u ∈ Des(x).

Proof. By assumption, there exists a sequence {wj}∞j=0 of distinct vertices such that Chi(x) = {wj : j ∈ Z+}
and w0 = w. Note that

Des(x)◦ \ Des(w)◦ = {w} �
∞�
j=1

Des(wj),

Des(x) \ Des(w) = {x} �
∞�
j=1

Des(wj). (4.16)

Set ϑ0 = 1 and take a sequence {ϑj}∞j=1 ⊆ [1, ∞) such that

∞∑
j=1

1
ϑj

< ∞. (4.17)

Applying Lemma 4.5, we see that for each j ∈ N there exist {λv}v∈Des(wj)◦ ⊆ (0, ∞) and {μv}v∈Des(wj) ⊆
Pϑj

(R+) which satisfy (4.13) and (4.14) for all u ∈ Des(wj). Define the sequence {λ̃wj
}∞j=0 ⊆ (0, ∞) by

λ̃wj
= 1√

ϑj

∫∞
0 sn−1dμwj

(s)
, j ∈ Z+.

By (4.14) and Lemma 2.1, the quantities λ̃wj
, j ∈ Z+, are well-defined. Noting that {μwj

}∞j=0 ⊆ P1(R+), 
we get

ζ :=
∞∑
j=0

λ̃2
wj

∞∫
0

1
s
dμwj

(s) �
∞∑
j=0

1
ϑj

∫∞
0 sn−1dμwj

(s)
�

∞∑
j=0

1
ϑj

(4.17)
< ∞,

and ζ > 0. Set λwj
= λ̃wj

/
√
ζ for j ∈ Z+ and define the measure μx ∈ P1(R+) by

μx(Δ) =
∞∑
j=0

λ2
wj

∫
Δ

1
s
dμwj

(s), Δ ∈ B(R+).

Clearly, with such {λv}v∈Des(x)◦\Des(w)◦ ⊆ (0, ∞) and {μv}v∈Des(x)\Des(w) ⊆ P1(R+) (cf. (4.16)), the systems 
{λv}v∈Des(x)◦ and {μv}v∈Des(x) satisfy (4.13) for all u ∈ Des(x). It remains to prove that (4.14) holds for 
u = x. For this, note that by (2.1), we have

∞∫
0

sndμx(s) = 1
ζ

∞∑
j=0

λ̃2
wj

∞∫
0

sn−1dμwj
(s) = 1

ζ

∞∑
j=0

1
ϑj

(4.17)
< ∞,

and
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∞∫
0

sn+1dμx(s) = 1
ζ

∞∑
j=0

λ̃2
wj

∞∫
0

sndμwj
(s)

= 1
ζ

∞∑
j=0

∫∞
0 ssn−1dμwj

(s)
ϑj

∫∞
0 sn−1dμwj

(s)

(�)
� 1

ζ

∞∑
j=0

ϑj

∫∞
0 sn−1dμwj

(s)
ϑj

∫∞
0 sn−1dμwj

(s)
= ∞,

where (�) follows from the fact that the closed support of μwj
is contained in [ϑj , ∞) for every j ∈ Z+. This 

completes the proof. �
Remark 4.7. Regarding the proof of Lemma 4.6, it is worth pointing out that we can define the sequence 
{λ̃wj

}∞j=0 ⊆ (0, ∞) using a more general formula

λ̃wj
= 1√

δj
∫∞
0 sn−1dμwj

(s)
, j ∈ Z+,

where {δj}∞j=0 ⊆ (0, ∞) and {ϑj}∞j=0 ⊆ [1, ∞) are such that

ϑ0 = 1,
∞∑
j=0

1
δj

< ∞ and
∞∑
j=0

ϑj

δj
= ∞.

The final stage of the proof of Theorem 3.1. If T has a root, then we can apply Lemma 4.5 (with w = root
and ϑ = 1) and then Lemma 2.4 and Theorem 2.2.

Now assume that the directed tree T is rootless. Take w0 ∈ V and note that V =
⋃∞

j=0 Des(parj(w0)) (see 
[15, Proposition 2.1.6]). Applying induction and Lemma 4.6 successively to w = parj(w0), we get systems 
{λv}v∈V ⊆ (0, ∞) and {μv}v∈V ⊆ P1(R+) which satisfy (4.13) and (4.14) for all u ∈ V . Finally, employing 
Lemma 2.4 and Theorem 2.2 completes the proof. �
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